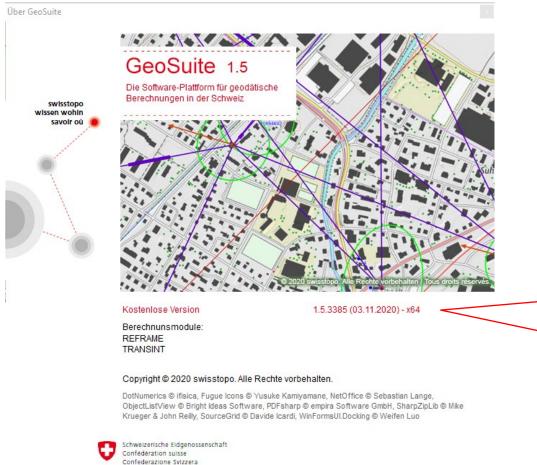
Transformations- und Interpolationsalgorithmen



neue Version seit 6. November 2020

mit allen Berechnungsmodulen kostenlos erhältlich!

Confederaziun svizra

Bundesamt für Landestopografie swisstopo Office fédéral de topographie swisstopo www.swisstopo.ch

Agenda

- 1. Grundlagen
- 2. Merksätze
- 3. zwei Transformationen (Helmert, affin)
- 4. Genauigkeit von Restklaffungen und ihre statistische Verteilung
- 5. neun Interpolationen (Fineltra, IDW, TRANSINT, Shepard, Polynome) mit Variationen
- 6. Erkenntnisse
- 7. Visualisierung
- 8. Fragen klären

Grundlagen (Literaturhinweise)

- Empfehlung für die Anwendung geometrischer Transformationsmethoden in der amtlichen Vermessung, Version 3.0 (swisstopo, 14. November 2017)
- Benutzeranleitung TRANSINT (swisstopo, November 2002) jetzt integriert in die
- GeoSuite Benutzeranleitung (swisstopo, November 2020), <u>URL</u>
- Furrer, Michael; Sievers, Beat (2009): «Qualitätsindikatoren für den Bezugsrahmenwechsel LV03-LV95» In: Geomatik Schweiz, 107 (2009), 01, <u>S. 20-24</u>
- Sievers, Beat; Fischer, Beat (2011): «Interpolationen und Kurvenbestimmung» In: Geomatik Schweiz, 109 (2011), 06, S. <u>299–301</u>
- Sievers, Beat (2020): Interpolationen in GeoSuite. Muttenz: FHNW-IVGI und absehbar: Über die Genauigkeit von Restklaffungen

Alle diese Dokumente enthalten weitere Literaturquellen und Erkenntnisse!

Merksätze

Scio nescio «Ich weiss, dass ich nicht weiss» Sokrates (470 - 399 v.Chr.)

- S. 11 auf dem Gebiet der Transformationen (*und Interpolationen*) gibt es **keine «Wunderlösungen»**
- S. 12 Transformationen und Interpolationen führen weder zur Korrektur von «versteckten» groben Fehlern noch zur automatischen und systematischen Verbesserung der Gesamtheit der Daten
- S. 93 durch die Transformation / Interpolation können die relativen Unsicherheiten der alten Daten kaum verbessert werden.

Viele praktische Versuche bestätigten die Merksätze des Transformationsleitfadens. Eine Interpolation verschlechtert die Qualität des Gebietes eher.

(Seitenzahlen beziehen sich auf die Empfehlung Transformationsmethoden in der AV)

Definition, Formel

Eine Transformation verknüpft 2 Bezugsrahmen mit homologen Passpunkten ¹ durch eine mathematische Operation. Nachfolgend beschränkt auf den 2D Fall:

$$\begin{aligned} & Y_{\text{Ziel}} + v_{\text{Y}} = \text{Ytransformiert} = Y_0 + a \cdot y_{\text{Start}} + b \cdot x_{\text{Start}} \\ & X_{\text{Ziel}} + v_{\text{X}} = \text{Xtransformiert} = X_0 - d \cdot y_{\text{Start}} + e \cdot x_{\text{Start}} \end{aligned} \quad \begin{aligned} & X_i + v_i = X_0 + \begin{bmatrix} a & b \\ -d & e \end{bmatrix} \cdot x_i \end{aligned}$$

$$\mathbf{X}_{i} + \mathbf{v}_{i} = \mathbf{X}_{0} + \begin{bmatrix} a & b \\ -d & e \end{bmatrix} \cdot \mathbf{x}_{i}$$

Helmert (konform):
$$b = d = m \cdot \sin \omega$$
 $a = e = m \cdot \cos \omega$

affin:
$$b = N_x \cdot \sin \psi$$
 $a = M_y \cdot \cos \varphi$

$$d = M_y \cdot \sin \varphi$$
 $e = N_x \cdot \cos \psi$

Berechnung m, ω , N_x, M_y, ϕ , ψ gemäss Transformationsempfehlung S. 49 , 45

¹ Passpunkt = Stützpunkt = Knoten (engl. fiducial point, node)

Bedeutung der Symbole

Y_{Ziel}, X_{Ziel} «gemessene» Koordinaten im Zielsystem (d.h. Beobachtungen)

v_Y , v_X Restklaffungen, Residuen (d.h. Verbesserungen im Zielsystem)

y_{Start}, x_{Start} gegebene, <u>starre</u> Koordinaten im <u>Startsystem</u> (d.h. konstante Werte)

Y, X transformiert gesuchte, ins Zielsystem transformierte Koordinaten des Startsystems

unbekannte Parameter (der vermittelnden Ausgleichung):

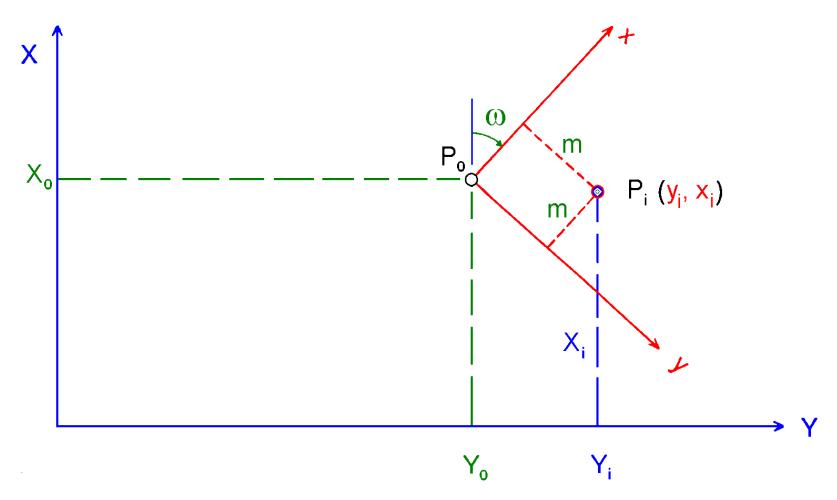
Y₀, X₀ Position des Ursprungs des Startsystems im Zielsystem

m, N_x, M_y Skalierung des Startsystems (-Achsabschnitte)

ω Azimut der x-Achse (Startsystem) im Zielsystem

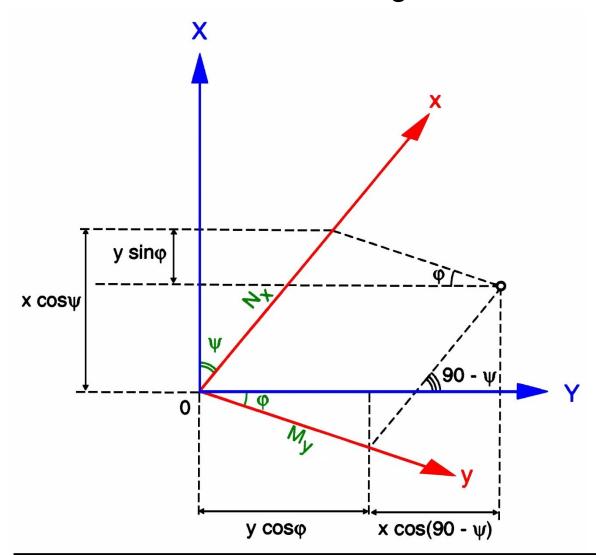
ψ, φ Rotation der x- bzw. y-Achse ausgehend von X- bzw. Y-Achse

geometrische Deutung der Helmerttrafo



Die innere Geometrie des Startsystems bleibt erhalten!

geometrische Deutung der affinen Trafo



Eigenschaften

Eigenschaft	ebene Ähnlichkeitstransformation	ebene Affintransformation				
Anwendungsgebiete	Vergleich Netzresultate (Varianten, Deformations-	Elimination von gerichteten Verformungen (z.B.				
	messungen)	Papierverzug, Scanner)				
	Homogenisierung (Entzerrung) alter Vermessungswerke	Interpolationsverfahren mit maschenweise affinen				
	Vorstufe für komplexe Interpolationsverfahren	Transformationen in einem triangulierten Gebiet				
	(beliebige Datumsübergänge)	Bezugsrahmenwechsel (LV03↔LV95)				
Minimale Anzahl Passpunkte	2	3				
Transformationsparameter	Y ₀ , X ₀ , m, ω	$Y_0, X_0, M_y, N_x, \varphi, \psi$				
Transformationsformeln	(beobachtete) Zielsystem-Koordinaten sind lineare Funktio					
	$X^{T} = X_{0} + m \cdot \cos \omega \cdot x - m \cdot \sin \omega \cdot y$	$\begin{array}{ll} \mathbf{X}^{T} &=& \mathbf{X}_{0} + \mathbf{N}_{x} \cdot \cos \psi \cdot \mathbf{x} - \mathbf{M}_{y} \cdot \sin \phi \cdot \mathbf{y} \\ \mathbf{Y}^{T} &=& \mathbf{Y}_{0} + \mathbf{N}_{x} \cdot \sin \psi \cdot \mathbf{x} + \mathbf{M}_{y} \cdot \cos \phi \cdot \mathbf{y} \end{array}$				
	$Y^T = Y_0 + m \cdot \sin \omega \cdot x + m \cdot \cos \omega \cdot y$	$ \mathbf{Y}^{T} = \mathbf{Y}_{0} + \mathbf{N}_{x} \cdot \sin \psi \cdot \mathbf{x} + \mathbf{M}_{y} \cdot \cos \varphi \cdot \mathbf{y} $				
Massstab	in allen Richtungen und an allen Orten gleich	2 ausgezeichnete Richtungen mit maximalem				
		und minimalem Massstab (Verzerrungsellipse)				
Geometrische Eigenschaften	Geradlinigkeit bleibt erhalten					
	Parallelität bleib					
	1	is in geraden Linien bleibt erhalten				
		is von Flächen bleibt erhalten				
	Streckenlängen ändern sich gleichmässig	Streckenlängen ändern sich richtungsabhängig				
	Winkel bleiben erhalten	Winkel werden verzerrt				
	Form der Figuren bleibt unverändert:	Form der Figuren bleibt nicht erhalten:				
	- Quadrate bleiben erhalten	- Quadrate werden zu Parallelogrammen				
	- Kreise bleiben erhalten	- Kegelschnitte bleiben erhalten (Kreis → Ellipse)				
Korrelationen zwischen fingierten Koordinatenbeobachtungen	werden in der R	egel vernachlässigt				
Numerik	mit (auf den Sc	hwerpunkt) reduzierten Koordinaten rechnen				
Redundanz bei den Passpunkten	Transformierte k	Coordinaten sind von den Sollkoordinaten ver-				
	schieden (→ Re	stklaffungen)				
Anwendung	nicht geeignet fü	r lokale, unregelmässige Verzerrungen				

$$m_0 = \sqrt{\frac{\left[v_X v_X\right] + \left[v_Y v_Y\right]}{2n - u}}$$

$$m_P = m_0 \cdot \sqrt{2}$$

Genauigkeiten (2D)

empirische Standardabweichung an X oder Y

daus der Transformation d

n = Anzahl Passpunkte; u : HT = 4 , AT = 6

Helmert'scher Punktfehler

<u>Ausreisser</u> liegen vor, wenn

Ablauf der Analyse gemäss (Furrer; Sievers 2009)

Residuenlänge
$$v_X$$
 oder $v_Y > 1.96 \cdot \sqrt{2} \cdot (\sigma_X \text{ oder } \sigma_Y)$ für $\alpha = 5\%$ (Irrtumsrisiko) $> 2.58 \cdot \sqrt{2} \cdot (\sigma_X \text{ oder } \sigma_Y)$ für $\alpha = 1\%$

 σ_X oder σ_Y ist die theoretische Standardabweichung der X oder Y Koordinate der Passpunkte (a priori; Erfahrungswerte annehmen)

$$fs = \sqrt{v_X^2 + v_Y^2} > 3.46 \cdot \sqrt{2} \cdot \sigma_X \qquad \text{für } \alpha = 5\%$$

$$> 4.29 \cdot \sqrt{2} \cdot \sigma_X \qquad \text{für } \alpha = 1\%$$
unter der Annahme $\sigma_X = \sigma_Y$

Statistische Verteilung der Residuen fs (2D)

Die Residuen (Restklaffungen) $f_S = \sqrt{v_X^2 + v_Y^2}$ sind Rayleigh verteilt:

$$\text{Wahrscheinlichkeitsdichte} \ \ f(fs \middle| \sigma_{fs}) = \begin{cases} \frac{fs}{\sigma_{fs}^2} e^{-\frac{fs^2}{2\sigma_{fs}^2}} & \text{fs} \geq 0 \\ 0 & \text{fs} < 0 \end{cases}$$

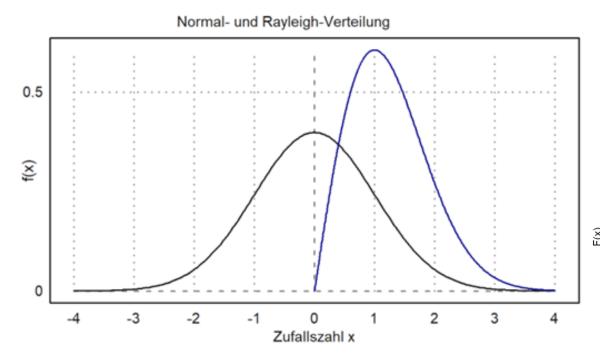
$$\label{eq:Verteilungs} Verteilungsfunktion \ F(fs) = \begin{cases} 1 - e^{-\frac{fs^2}{2\sigma_{fs}^2}} & \text{fs} \geq 0 \\ 0 & \text{fs} < 0 \end{cases}$$

Graph siehe folgende Folie

$$\text{Erwartungswert } \text{E(fs)} = \sigma_{\text{fs}} \sqrt{\frac{\pi}{2}} \quad \text{Median} = \sigma_{\text{fs}} \sqrt{2 \cdot \ln(2)} \quad \text{Varianz } \text{Var(fs)} = \frac{4 - \pi}{2} \sigma_{\text{fs}}^2$$

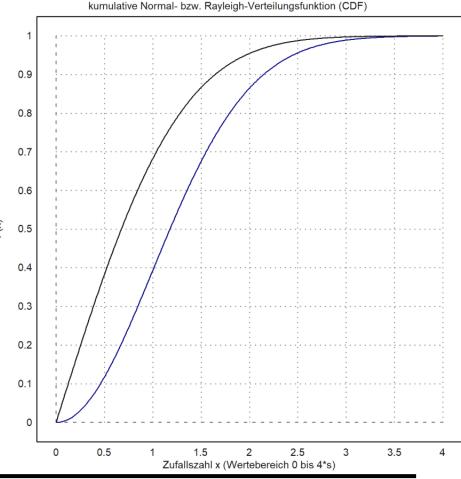
Vergleich Normalverteilung – Rayleigh Verteilung

Wahrscheinlichkeitsdichtefunktion



f(x)- bzw. f(fs)-Werte für x bzw. fs von -4 bis +4 $\sigma = \sigma_{fs} = 1.0$

Verteilungsfunktion F(x) bzw. F(fs)



Vergleich TVAV 101 ⇔ Ausreisser aus Rayleigh Verteilung

(gerechnet mit den Formeln aus Folie 10 unten)

TVAV Art.	101, Abs. 1		Rayleigh 5%	Rayleigh 1%		
Massstab	σ Passpunkt	Restfehlervektor	<i>Ausreisser,</i> w	venn fs >		
1:500	8	max. 24.0 cm	39.1	48.5	cm	
1:1000	16	max. 48.0 cm	78.3	97.1	cm	
1:2000	32	max. 96.0 cm	156.6	194.1	cm	
Weisung F	Punktgenauig	keit vom 1.1.201	5, Abs. 5.1			
Tol.stufe	σ Punkt	Toleranz = $3*\sigma$	Rayleigh 5%	Rayleigh 1%		
GP TS3	7	21	34.3	42.5	cm	
GP TS4	15	45	73.4	91.0	cm	
GP TS5	35	105	171.3	212.3	cm	

Interpolation

Affintransformation nach finiten Elementen

1 maschenweise Affintransformation, sie ist eine Interpolation!«Masche» ist ein Dreieck, aufgespannt von 3 Transformationsstützpunkten (TSP)

Software: (FINELTRA); REFRAME (mit <u>CHENyx06 Datensatz</u>); GeoSuite → TRANSINT → Interpolation → Fineltra (Dreiecksvermaschung)

keine Überbestimmung! 3 TSP × 2 Koordinaten = 6 Gleichungen, um die 6 Parameter (Y_0, X_0, a, b, d, e) zu bestimmen

⇒ es braucht Kontrollpunkte (KP) !!!

⇒ bei Einsatz in lokalen Entzerrungsarbeiten sehr sorgfältig mit KP prüfen

Theorie siehe Transformationsempfehlung 4.5.2 (S. 58 – 62) bzw. Programmanleitungen

Interpolation

Methodik

«Interpolation heisst Zuweisung eines zugehörigen berechneten Wertes für nicht direkt gemessene Punkte unter Annahme über den Verlauf zwischen den bekannten Punkten» (Ralf Bill, 1996).

Die Koordinaten der Passpunkte in einem «guten» Zielsystem sollen nicht ändern. Restklaffungen v_X , v_Y sind daher nicht erwünscht. Sie werden zu Null kompensiert und die benachbarten (transformierten) Neupunkte werden entsprechend mitgezogen (**Nachbarschaftsprinzip**).

- ! Die innere Geometrie des Startsystems wird zerstört !
- ? welche und wie weit sollen Passpunkte wirken

 ⇒ Einflussradius ?
- ? wie stark soll ihre Wirkung abnehmen ⇒ Kern- / Basisfunktion ?
- ? wie wirkt eine Passpunktverteilung ⇒ Korrelation / Knotenfunktion ?

Interpolationsmethoden gewogenes Mittel

2 Interpolation nach gewogenem Mittel in der französischen CH eingesetzt S. 63

Kernfunktion: interpolierter Wert im Punkt k $U_k = \frac{[p_i \cdot v_i]}{[p_i]}$; $p_i = \frac{1}{s_i^{\lambda} + c}$

v_i: Residue (Restklaffung) im Passpunkt i

p_i: Gewicht i

s_i: Distanz vom Punkt k zum Passpunkt i

 λ : regelt **Einflussweite**; i.A. $\lambda = 1$, 2 (, selten 1.5)

c : eine Konstante («Glättungswert»), meistens = 0

Interpolationsmethoden verbessertes gewogenes Mittel

3 Interpolation nach verbessertem gewogenem Mittel in der ganzen CH eingesetzt **TRANSINT**

S. 64-66

ermöglicht Transformation (2, 3, 4 oder 6 Parameter) und Interpolation

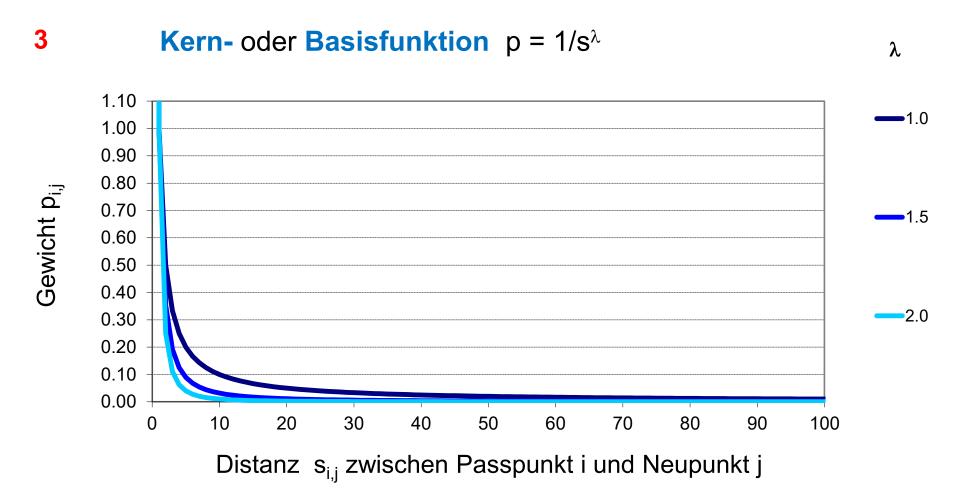
$$dy_k = \left(\mathbf{A}^T \mathbf{P}_r \mathbf{A}\right)^{-1} \cdot \mathbf{A}^T \mathbf{P}_r dy \text{ mit } \mathbf{P}_r = \mathbf{P}^{1/2} \cdot \mathbf{R} \cdot \mathbf{P}^{1/2} \text{ ; } \mathbf{A}^T = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}; \text{ } \mathbf{R} \text{ siehe Folien 41-43}$$

Kernfunktion: $p_i = \frac{1}{s_i^2}$ s: Distanz zwischen Neupunkt und Passpunkt

Einflussweite: ist theoretisch unendlich, praktisch endet sie bei 4·d₀ die Wahl der **Maschenweite** d₀ ist nicht trivial! ≈ LFP-Abstand

Korrelation zwischen den Passpunkten wird berücksichtigt bei d_0 ist $r_{ij} = 50\%$; bei $2 \cdot d_0$ ist $r_{ij} = 8.6 \%$; bei $3 \cdot d_0$ ist $r_{ij} < 5 \%$

TRANSINT



Details zur Korrelationsfunktion R siehe Folien 41 bis 43

TRANSINT

3 Vorteile / Nachteile / Bemerkungen

- in der CH breit eingeführt und verwendet
- + stabile Ergebnisse
- die Korrelationsfunktion r_{ij} ist nicht wissenschaftlich, sondern empirisch begründet
- für Praktiker kognitiv schwer zu bewältigen (Black Box)
- Stützpunktkoordinaten ändern wegen Q(0) = 0.9
- d₀ muss willkürlich festgelegt werden
- kann im Interpolationsgebiet nicht variiert werden ⇒ Gebiet unterteilen!
- für Triangulationsnetze (LFP2 LFP3) mit 100 bis 200 Punkten entwickelt;
 für grosse Punktfelder der AV mit vielen Passpunkten sehr rechenintensiv!
 - ⇒ neue Option « Lokal » verwenden (siehe nächste Folie)

TRANSINT

3 neue Option « Lokal » in GeoSuite-TRANSINT

Korrelation zwischen den Stützpunkten		
Global (für den ganzen Perimeter, s		
Lokal, maximaler Radius [m]:	1000	Poinnial
Minimale Anzahl von Stützpunkten	: 30	Beispiel
Maschenweite d0 [m]:	500	

das heisst:

minimal 30 Stützpunkte sollen in einem Umkreis von 1'000 m vom aktuellen Neupunkt aus gesehen verwendet werden.

zwischen jeweils zwei Passpunkten mit Zwischenabstand von 500 m besteht eine Korrelation von 0.5

Shepard (1968)

4 ist identisch mit der 2 Interpolation nach gewogenem Mittel S. 66-70 siehe Folie 16

Kernfunktion: interpolierter Wert
$$U_k = f(\mathbf{x}) = \frac{[p_i \cdot v_i]}{[p_i]}$$
; $p_i = w(\mathbf{x}) = \frac{1}{s_i^2} = \frac{1}{\|\mathbf{x} - \mathbf{x}_i\|^2}$

 s_i : Distanz vom Neupunkt x zum Passpunkt x_i (= Norm des Vektors $x - x_i$)

dies ist die einfachste Form der inversen Distanzgewichtung (IDW)

f(x) heisst Interpolierende oder Interpolante

ist in GeoSuite mit der Knotenfunktionstyp «konstant» realisiert

⇒ wird aber nicht zur Anwendung empfohlen!

$$f(\mathbf{x}) = \frac{\left[p_i \cdot v_i\right]}{\left[p_i\right]}; p_i = w(\mathbf{x}) = \frac{1}{s_i^2}$$
Shepard

$$f(\mathbf{x}) = \frac{\left[p_i \cdot v_i\right]}{\left[p_i\right]}; p_i = w(\mathbf{x}) = \frac{1}{s_i^2}$$

$$| \mathbf{f}(\mathbf{x})| = \frac{\sum_{i=1}^{N_w} W_i(\mathbf{x}) \cdot Q_i(\mathbf{x})}{\sum_{i=1}^{N_w} W_i(\mathbf{x})}; N_w < N$$
Shepard
$$| \mathbf{f}(\mathbf{x})| = \frac{\sum_{i=1}^{N_w} W_i(\mathbf{x}) \cdot Q_i(\mathbf{x})}{\sum_{i=1}^{N_w} W_i(\mathbf{x})}; N_w < N$$

modified Shepard (1988)

Interpolante:
$$f(\mathbf{x}) = \frac{\sum_{i=1}^{N_w} W_i(\mathbf{x}) \cdot Q_i(\mathbf{x})}{\sum_{i=1}^{N_w} W_i(\mathbf{x})}$$
; $N_w < N$

totale Anzahl der Passpunkte Ν

die dem Neupunkte **x** nächsten, zu verwendenden Passpunkte **x**_i N_{w}

$$W_i(\mathbf{x})$$
 Gewichtsfunktion $W_i(\mathbf{x}) = \frac{1}{\|\mathbf{x} - \mathbf{x}_i\|^2} - \frac{1}{R_x^2}$, $R_x = \max_{N_w} \|\mathbf{x} - \mathbf{x}_i\|$

Kernfunktion

Einflussradius R_x : maximale Distanz zwischen dem Neupunkt **x** und seinen N_w benachbarten Passpunkten \mathbf{x}_i . Ausserhalb dieses Radius' wird der Funktionswert von W_i zu Null gesetzt.

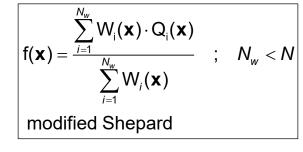
 $s_i = \|\mathbf{x} - \mathbf{x}_i\|$ Distanz vom Neupunkt \mathbf{x} zum Passpunkt \mathbf{x}_i

$$f(\mathbf{x}) = \frac{\left[\rho_i \cdot \mathbf{v}_i\right]}{\left[\rho_i\right]}; \ \rho_i = \mathbf{w}(\mathbf{x}) = \frac{1}{\mathbf{s}_i^2}$$

$$\text{Shepard}$$

$$f(\mathbf{x}) = \frac{\sum_{i=1}^{N_w} W_i(\mathbf{x}) \cdot Q_i(\mathbf{x})}{\sum_{i=1}^{N_w} W_i(\mathbf{x})}$$

$$\text{modified Shepard}$$



modified Shepard

 $Q_i(\mathbf{x})$ ist die **Knotenfunktion**, die an die Stelle der Restklaffung v_i tritt:

$$\mathbf{Q}_{\mathbf{i}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + g$$
; $\mathbf{A} \in \mathbb{R}^{D \times D}$, $\mathbf{b} \in \mathbb{R}^{D}$, $\mathbf{g} \in \mathbb{R}$ ausmultipliziert (2D Fall, quadratisch): $\mathbf{Q}_{\mathbf{i}} = ax^2 + 2bxy + dy^2 + ex + fy + g$ im i.-ten Passpunkt $\mathbf{x}_{\mathbf{i}}$ ist zudem die Bedingung einzuhalten: $\mathbf{Q}_{\mathbf{i}}(x_{\mathbf{i}}) - v_{\mathbf{i}} = 0$

Die 6 vorerst unbekannten Koeffizienten [a b d e f g] sind also aus mindestens 3 Stützpunkten zu bestimmen. Dies erfolgt in einer «vermittelnden Ausgleichung mit Bedingung zwischen den unbekannten Parametern (auch Gauss-Markov-Modell genannt)»

Knotenfunktions**typen**: Konstant nicht empfohlen

> **empfohlen** (⇒ gute Genauigkeit) Linear

Quadratisch **empfohlen** (⇒ beste Qualität)

Schnell Linear nicht empfohlen

modified Shepard

5 Wahl der Parameter N_W und N_q

 N_w : GeoSuite stellt auf $N_w \ge 2^D + 1$ ein bzw. empfiehlt $N_w \approx 2 \cdot N_q$

Parameter	Dimension D des Raumes						
	1	2	3				
N _w ≥	3	5	9				

 N_a : Gibt man keinen Wert vor, stellt GeoSuite auf folgenden Wert ein:

Knotenfunktions-	Parameter	Dimension D des Raumes				
typ		1	2	3		
konstant :	N _a wird ignoriert					
linear :	N _a ≥	3	5	9		
quadratisch:	N _a ≥	5	9	15		

modified Shepard

- 5 wie läuft der Algorithmus ab?
 - 1. Passpunkte einlesen
 - 2. Zu jedem Passpunkt \mathbf{x}_i werden die N_q nächsten Nachbarn gesucht ...
 - 3. ... und die Koeffizienten **A**, **B** und g der Knotenfunktion $Q_i(\mathbf{x})$ bestimmt.
 - 4. Zu jedem Interpolationspunkt \mathbf{x} werden die N_w nächsten Nachbarn gesucht.
 - 5. Die Gewichtsfunktion $W_i(\mathbf{x})$ wird für diese Nachbarn berechnet.
 - 6. Die Interpolante $f(\mathbf{x})$ wird als gesuchte Residue des Punktes \mathbf{x} berechnet.

Vorteile / Nachteile der Shepard Methoden: siehe (Sievers 2020)

Polynome

Polynom-Interpolationen

S. 72-73

viele Möglichkeiten

Kernfunktion: hauptsächlich **bilinear** (m = n = 1) $U_k = \sum_{j=0}^{m} \sum_{j=0}^{n} a_{ij} \cdot x^j \cdot y^j$ oder **biquadratisch** (m = n = 2),

hin und wieder auch **bikubisch** (m = n = 3) oder **bispline**

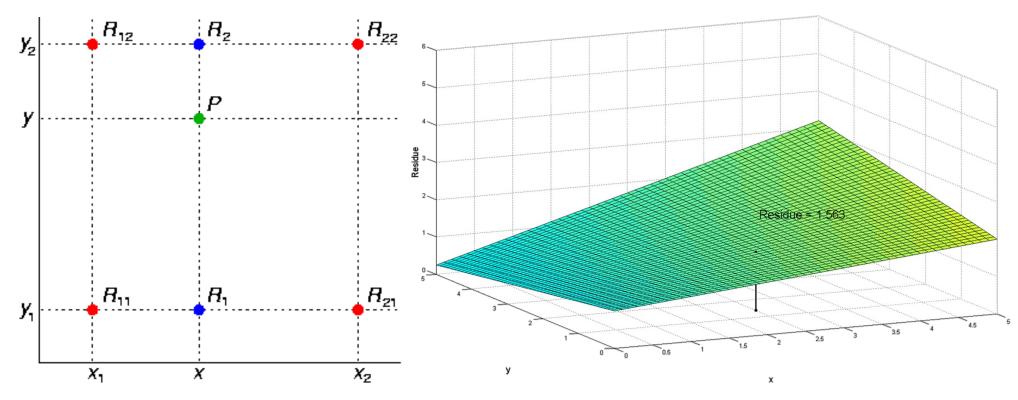
Sie sind geeignet für komplexe Fälle mit ausgeprägten lokalen Eigenheiten

Es braucht viele Passpunkte. Eine gitterförmige Passpunktanordnung wird empfohlen.

Einflussweite: begrenzt auf ein lokal verwendetes Passpunktfeld (4, 9 oder 16 Rasterpunkte)

Polynome

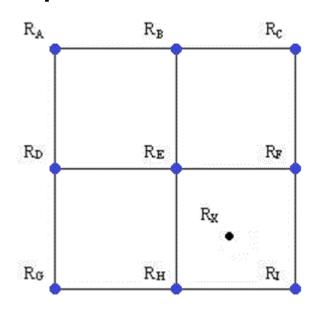
6 bilinear

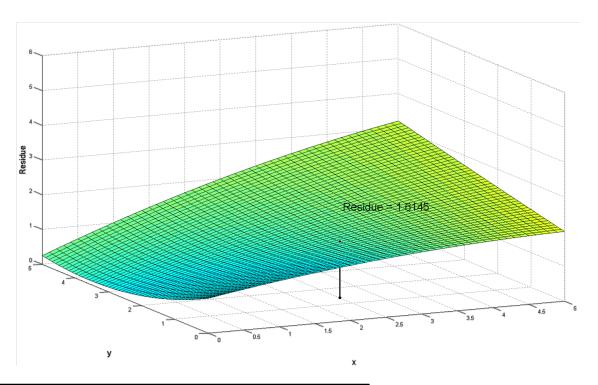


$$R_i = a + bx_i + cy_i + dx_iy_i$$
 gegeben 4 Stützwerte R_i , gesucht 4 Parameter a, b, c, d

Polynome

7 biquadratisch



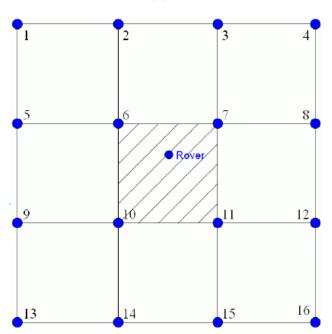


$$R_{i} = a + bx_{i} + cy_{i} + dx_{i}^{2} + ex_{i}y_{i} + fy_{i}^{2} + gx_{i}^{2}y_{i} + hx_{i}y_{i}^{2} + ix_{i}^{2}y_{i}^{2}$$

gegeben 9 Stützwerte R_i , gesucht 9 Parameter a, b , ... , i

Polynome

8 bikubisch (geodätische Anwendung)



$$R_{x} = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

gegeben 16 Stützwerte R_i

gesucht 16 Parameter a_{00} , ..., a_{33}

9 bispline

Ein kubischer Spline ist eine glatte Kurve, die durch die gegebenen Punkte im Rastersystem geht und eine minimale Gesamtkrümmung aufweist. Jedes Teilstück ist dabei durch eine kubische Parabel definiert.

Erkenntnisse 1

4 Lösungsansätze bieten sich zur Einpassung an: Transformationsempfehlung, S. 91 gutes allgemeines Entscheidungsschema: Transformationsempfehlung, S. 94 - 97 Jedes Operat ist ein Unikat. Deshalb resultiert in allen Fällen ein hoch **iterativer Prozess**: «trial and error» (es gibt keine «automatischen» Knopfdruck-Lösungen!) denn die «Wahrheit» ist relativ und momentan

Die Wahl des Interpolationsalgorithmus' beeinflusst die Güte der Interpolation nur gering. Viel wichtiger ist die Verteilung der Passpunkte und Kontrollpunkte (und die richtigen Parametereinstellungen).

Die Anzahl der erforderlichen Stützpunkte hängt von der Homogenität des bearbeiteten Spannungsgebietes ab. Sie lässt sich nicht verbindlich quantifizieren.

Die Verteilung der Stützpunkte soll das Gebiet repräsentieren und umfassen.

Die vorhandenen Passpunkte sind in Randzonen einer Interpolation allenfalls durch fiktive zu ergänzen.

Erkenntnisse 2

Die Zahl der Kontrollpunkte sollte 30% bis 50% der Stützpunkte betragen und ihre Umgebung ebenfalls repräsentieren.

Stützpunktmassierungen sollen in TRANSINT vermieden werden.

Die Toleranzen sind gut bemessen, die Sicherheit ist erheblich (95% oder 99%).

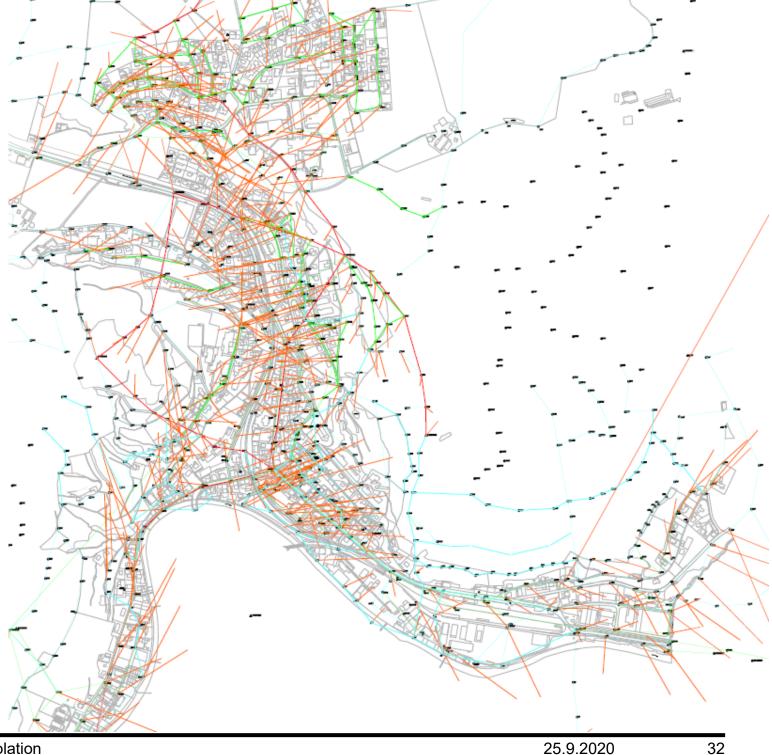
Wenn das Startsystem nicht in LV95 vorliegt, wird als **Vortransformation** vor den Entzerrungsarbeiten eine Translation, eine (robuste) Helmerttransformation oder eine REFRAME-Interpolation empfohlen

Visualisieren ist zwingend !!! ⇒ siehe nachfolgende Folien

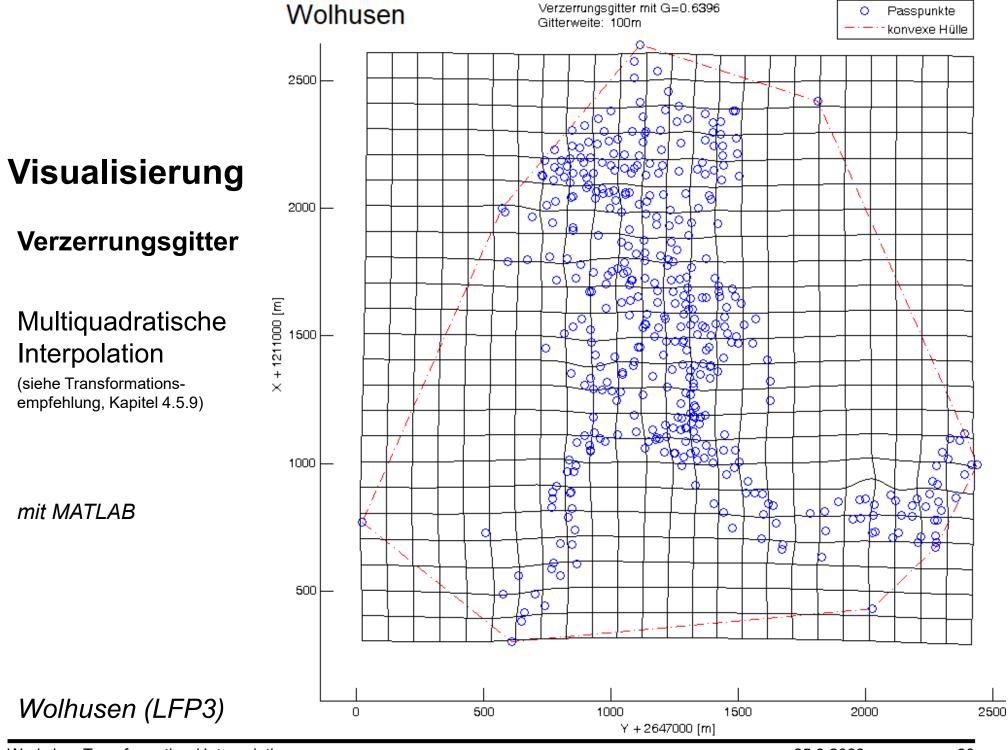
Vektorpläne

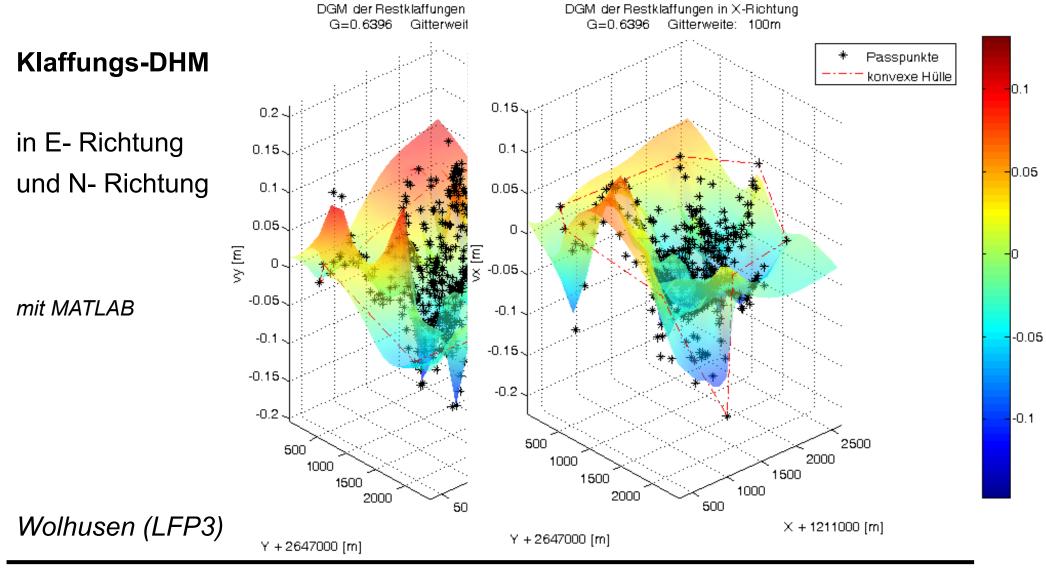
Passpunkte PP und Kontrollpunkte KP

wenn möglich farblich unterscheiden



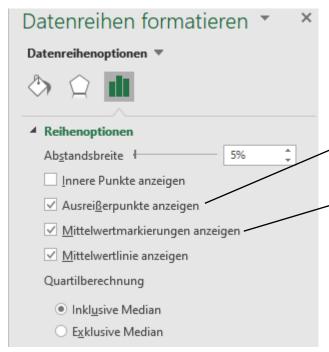
Wolhusen (LFP3)

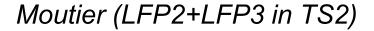


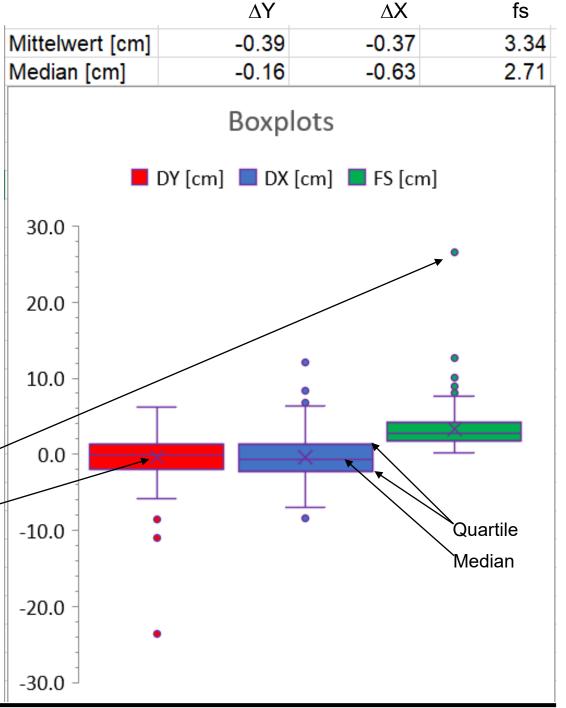


Boxplots (E, N, fs)

z.B. mit Excel



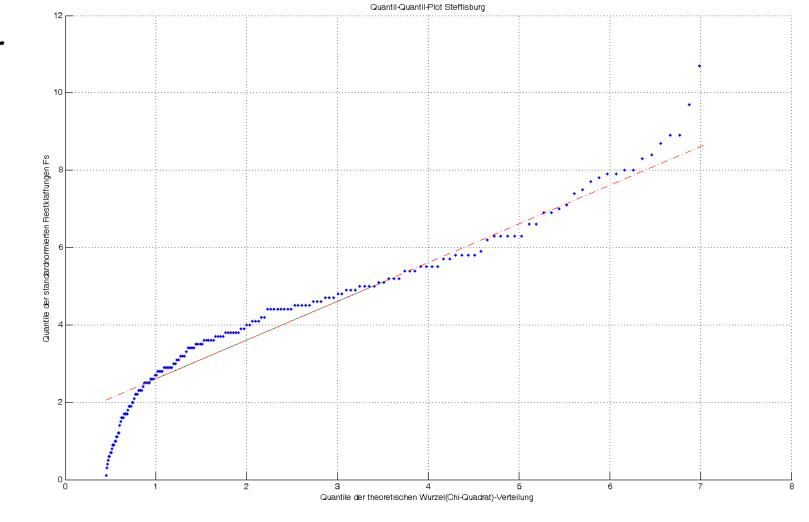




zuerst **Prüfung der Verteilung der fs**

z.B. mit QQ-Plot

hier mit MATLAB



Steffisburg, Los 1 (LFP3 in TS2)

		Genauigkeit /	Restklaffen	Kontrollpunkte	
--	--	---------------	-------------	----------------	--

Bauzone (TS 1 / 2)

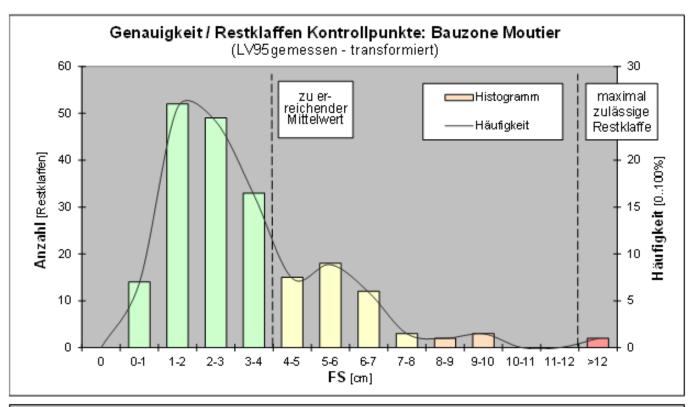
Wert [FS]	0	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	>12	Summe
Anzahl	0	14	52	49	33	15	18	12	3	2	3	0	0	2	203
Prozent	0.0	6.9	25.6	24.1	16.3	7.4	8.9	5.9	1.5	1.0	1.5	0.0	0.0	1.0	100

															Mittel
WertxAnzahl	0	14	104	147	132	75	108	84	24	18	30	0	0	26	3.75

Visualisierung

dann Verteilung

hier mit Excel

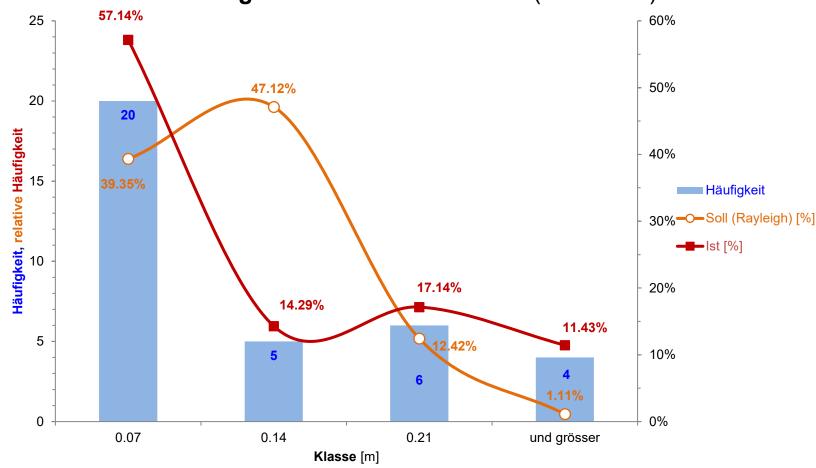


Verteilung der Restklaffen auf die Kontrollpunkte Ist- und Soll-Werte Summe 72.9% 23.6% 2.5% Prozent 50 - 75% / alle LFP 2-KP Sollwert Sollwert 96.6% Mittelwert Summe Summe Wertebereich 1 und 2: 75 - 95% 3.8 cm Sollwert: Sollwert Sollwert 99% Summe Summe Sollwert Wertebereiche 1 - 3: 100% Sollwert

Moutier (LFP3 in TS2)

Histogramm der Restklaffen fs (35 Punkte)

mit Excel



♦ Widerspruch mit Begründung siehe Folien 10 und 13

© Amt für Geoinformation, Kanton Bern

(Protokoll-Dateien)

ein synthetisches Beispiel einer FHNW-Übung, mit GeoSuite berechnet

Stützpunkte

Punkt	E Start [m]	N Start [m]	E Ziel [m]	N Ziel [m]
1	2614999.985	1264099.988	2615000.000	1264100.000
9	2615000.003	1264900.017	2615000.000	1264900.000
43	2615399.989	1264299.989	2615400.000	1264300.000
47	2615400.028	1264699.979	2615400.000	1264700.000
101	2616000.003	1264100.026	2616000.000	1264100.000
105	2615999.992	1264500.006	2616000.000	1264500.000
109	2616000.001	1264899.995	2616000.000	1264900.000

Interpolierte Punkte und Verschiebungen

Punkt	E Start [m]	N Start [m]	E Ziel [m]	N Ziel [m]	$\mathbf{d}_{\mathbf{E}}$ [mm]	d _N [mm]
1	2614999.985	1264099.988	2615000.000	1264100.000	15.2	11.7
9	2615000.003	1264900.017	2615000.000	1264900.000	-2.5	-17.1
43	2615399.989	1264299.989	2615400.000	1264300.000	11.4	10.8
47	2615400.028	1264699.979	2615400.000	1264700.000	-27.5	21.4
101	2616000.003	1264100.026	2616000.000	1264100.000	-3.4	-26.2
105	2615999.992	1264500.006	2616000.000	1264500.000	7.8	-5.6
109	2616000.001	1264899.995	2616000.000	1264900.000	-1.0	5.0
15	2615100.553	1264500.356	2615100.553	1264500.360	-0.1	4.6
64	2615600.568	1264400.340	2615600.579	1264400.349	10.5	8.9
82	2615800.568	1264200.332	2615800.566	1264200.310	-2.0	-22.2
84	2615800.574	1264400.334	2615800.582	1264400.330	7.9	-4.5
86	2615800.580	1264600.336	2615800.586	1264600.332	5.8	-4.0
93	2615900.572	1264300.330	2615900.575	1264300.315	2.4	-15.2
95	2615900.578	1264500.334	2615900.586	1264500.328	7.8	-5.6
GP1	2615650.567	1264500.338	2615650.565	1264500.347	-2.6	8.6
GP2	2615650.568	1264550.340	2615650.558	1264550.351	-10.7	11.0
GP3	2615800.573	1264550.336	2615800.580	1264550.331	7.3	-5.1
GP4	2615800.572	1264500.335	2615800.580	1264500.330	7.7	-5.4

Fragen

jetzt?

oder später an sievers-frey@bluewin.ch

Danke für Ihre Aufmerksamkeit!

TRANSINT

3 Korrelationsfunktion

man nimmt die Funktion der Gauss'schen Glockenkurve und bildet die

Kovarianz
$$C(d_{ij}) = C(0) \cdot e^{-(B \cdot d_{ij})^2}$$
 (deren Varianz $\sigma^2 = 1$ ist)

$$d_{ij} = \sqrt{(y_{PP_i} - y_{PP_j})^2 + (x_{PP_i} - x_{PP_j})^2}$$
: Distanz zwischen den Passpunkten i und j

und setzt C(0) = 0.9 als Korrelation zwischen 2 sehr nahen Passpunkten $(d_{ij} \rightarrow 0)$, aus Versuchen ermittelt. Daraus folgt:

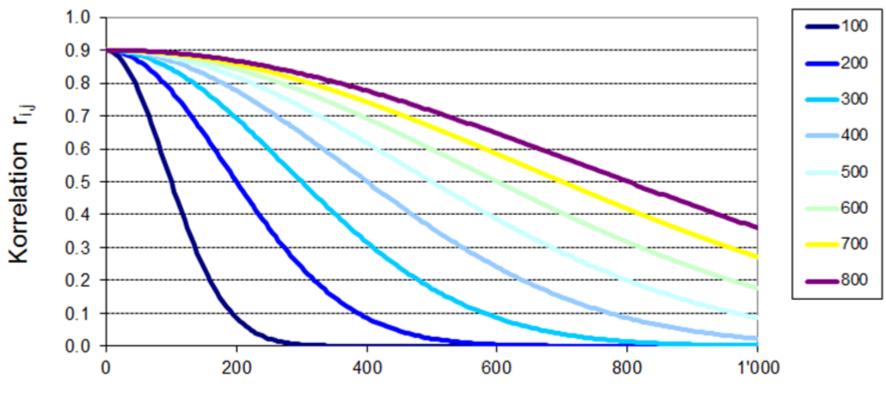
$$r_{ij} = 0.9 \cdot e^{-\ln(1.8) \cdot \left(\frac{d_{ij}}{d_0}\right)^2}$$

$$B = \frac{\sqrt{\ln(1.8)}}{d_0} = \frac{0.767}{d_0}$$

hergeleitet und begründet in: Carosio, A. (1980): Anwendung von Interpolationsverfahren in der Landestriangulation. In: VPK-MPG 78 (10):405-407.

TRANSINT

3 Korrelationsfunktion
$$r_{ij} = 0.9 \cdot e^{-\ln(1.8) \left(\frac{d_{ij}}{d_0}\right)^2} = \frac{0.9}{4.0^{\left(\frac{d_{ij}}{d_0}\right)^2}}$$



 \mathbf{d}_0

TRANSINT

3 Korrelationsmatrix R (modelliert stochastische Abhängigkeit zwischen Passpunkten)

